Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Journal of Zhejiang University. Medical sciences ; (6): 162-170, 2021.
Article in English | WPRIM | ID: wpr-879968

ABSTRACT

To investigate the effects of interleukin (IL)-17-mediated autophagy on the TNF receptor associated factor (TRAF6)/extracellular signal-regulated kinase (ERK)/p38 pathway and osteoclast differentiation. Mouse bone marrow-derived macrophages (BMM) were cultured with a medium containing 30 ng/mL macrophage colony stimulating factor and 50 ng/mL receptor activator of nuclear factor-kappa B ligard (RANKL), and IL-17 (0.01, 0.1, 1.0, 10 ng/mL) was added for intervention (IL-17 group). Tartrate-resistant acid phosphatase (TRAP) staining was used to observe TRAP positive multinucleated cells; phalloidin fluorescent staining was used to detect actin ring circumference; toluidine blue staining was used to analyze bone resorption lacuna formation. To further examine the mechanism of the effect of IL-17-mediated autophagy on the differentiation of osteoclasts, the control group used RANKL medium to culture mouse macrophage RAW264.7 cells, while the IL-17 group was treated with IL-17 (0.01, 0.1, 1.0, /mL). Western blot was used to detect the expression of autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) and osteoclast-related proteins c-fos and nuclear factor of activated T cell 1 (NFATc1) after treatment with different concentrations of IL-17. The expression of LC3, NFATc1, TRAF6/ERK/p38 signaling pathway related proteins were detected in IL-17 and autophagy inhibitor 3-MA group. The number of TRAP positive multinucleated cells, the circumference of the actin ring and the area of bone resorption lacuna in IL-17 group treated with IL-17 (0.01, 0.1, were significantly higher than those in the control group. In IL-17 treated RAW264.7 cells, the expression of c-fos, NFATc1, Beclin-1, LC3, TRAF6, p-ERK, and p-p38 was all significantly up-regulated (all 0.05). After treatment with the autophagy inhibitor 3-MA, the expression levels of LC3, NFATc1, TRAF6, p-ERK, and p-p38 all decreased significantly (all 0.05). IL-17 can promote the expression of autophagy proteins and enhance the differentiation ability of osteoclast precursor cells, and the TRAF6/ERK/p38 signaling pathway may be involved in this process.


Subject(s)
Animals , Mice , Autophagy , Bone Resorption , Cell Differentiation , Extracellular Signal-Regulated MAP Kinases , Interleukin-17 , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , RANK Ligand/metabolism , TNF Receptor-Associated Factor 6
2.
Biol. Res ; 52: 10, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011412

ABSTRACT

BACKGROUND: Non-canonical Wnt pathways play important roles in liver fibrosis. Notum is a newly discovered inhibitor to Wnt proteins. This study was to investigate anti-fibrotic effects of Notum. METHODS: 53 patients with hepatitis B virus (HBV) infection as well as a cell co-culture system of LX-2 and Hep AD38 cells were engaged in this study. Clinical, biological and virological data of each patient were analyzed. Cell viability was detected at different time points. mRNA and protein levels of NFATc1 (Nuclear factor of activated T-cells), Jnk, α-SMA, Col1A1 and TIMP-1 were detected both in LX-2 and liver tissue. Protein levels of NFATc1 and Jnk in liver tissue and their correlations with fibrosis score were analyzed. RESULTS: Hepatitis B virus replication up-regulated Wnt5a induced NFATc1 and Jnk activity in Hep AD38. Notum suppressed NFATc1, Jnk and fibrosis genes expression, reduced cell viability in co-cultured LX-2 cells induced by HBV. Interestingly, Patients with HBV DNA > 5log copies/ml had higher mRNA levels of NFATc1 and fibrosis genes than patients with HBV DNA < 5log copies/ml. Most importantly, protein expressions of NFATc1 and pJnk have positive correlations with liver fibrosis scores in HBV-infected patients. CONCLUSIONS: Our data showed that Notum inhibited HBV-induced liver fibrosis through down-regulating Wnt 5a mediated non-canonical pathways. This study shed light on anti-fibrotic treatment.


Subject(s)
Humans , Male , Female , Adult , Esterases/administration & dosage , Wnt-5a Protein/antagonists & inhibitors , Hepatitis B/complications , Liver Cirrhosis/prevention & control , Virus Replication , Transfection , Cell Survival , Hepatitis B virus/physiology , Actins/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Collagen Type I/metabolism , MAP Kinase Kinase 4/metabolism , NFATC Transcription Factors/analysis , NFATC Transcription Factors/metabolism , Wnt Signaling Pathway , Wnt-5a Protein/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/virology
3.
J. appl. oral sci ; 23(6): 549-554, Nov.-Dec. 2015. graf
Article in English | LILACS, BBO | ID: lil-769817

ABSTRACT

ABSTRACT Objective This study aimed to investigate the potential role of CAMK II pathway in the compression-regulated OPG expression in periodontal ligament cells (PDLCs). Material and Methods The PDL tissue model was developed by 3-D culturing human PDLCs in a thin sheet of poly lactic-co-glycolic acid (PLGA) scaffolds, which was subjected to static compression of 25 g/cm2 for 3, 6 and 12 h, with or without treatment of KN-93. After that, the expression of OPG, RANKL and NFATC2 was investigated through real-time PCR and western blot analysis. Results After static compression, the NFATC2 and RANKL expression was significantly up-regulated, while partially suppressed by KN-93 for 6 and 12 h respectively. The OPG expression was significantly down-regulated by compression in 3 h, started to elevate in 6 h, and significantly up-regulated in 12 h. The up-regulation after 12 h was significantly suppressed by KN-93. Conclusions Long-term static compression increases OPG expression in PDLCs, at least partially, via the CAMK II pathway.


Subject(s)
Humans , /metabolism , Osteogenesis/physiology , Osteoprotegerin/metabolism , Periodontal Ligament/cytology , Benzylamines/pharmacokinetics , Blotting, Western , Bone Resorption/metabolism , Cells, Cultured , Down-Regulation , NFATC Transcription Factors/metabolism , Pressure , Protein Kinase Inhibitors/pharmacokinetics , RANK Ligand/analysis , RANK Ligand/metabolism , Random Allocation , Real-Time Polymerase Chain Reaction , Sulfonamides/pharmacokinetics , Time Factors , Up-Regulation
4.
Dental press j. orthod. (Impr.) ; 20(1): 79-84, Jan-Feb/2015. tab, graf
Article in English | LILACS | ID: lil-741451

ABSTRACT

OBJECTIVE: The aim of the present study was to determine the morphological differences in the base of the skull of individuals with cleft lip and palate and Class III malocclusion in comparison to control groups with Class I and Class III malocclusion. METHODS: A total of 89 individuals (males and females) aged between 5 and 27 years old (Class I, n = 32; Class III, n = 29; and Class III individuals with unilateral cleft lip and palate, n = 28) attending PUC-MG Dental Center and Cleft Lip/Palate Care Center of Baleia Hospital and PUC-MG (CENTRARE) were selected. Linear and angular measurements of the base of the skull, maxilla and mandible were performed and assessed by a single calibrated examiner by means of cephalometric radiographs. Statistical analysis involved ANCOVA and Bonferroni correction. RESULTS: No significant differences with regard to the base of the skull were found between the control group (Class I) and individuals with cleft lip and palate (P > 0.017). The cleft lip/palate group differed from the Class III group only with regard to CI.Sp.Ba (P = 0.015). Individuals with cleft lip and palate had a significantly shorter maxillary length (Co-A) in comparison to the control group (P < 0.001). No significant differences were found in the mandible (Co-Gn) of the control group and individuals with cleft lip and palate (P = 1.000). CONCLUSION: The present findings suggest that there are no significant differences in the base of the skull of individuals Class I or Class III and individuals with cleft lip and palate and Class III malocclusion. .


OBJETIVO: o objetivo do presente estudo foi determinar diferenças morfológicas da base do crânio de indivíduos portadores de fissura de lábio e palato e de má oclusão de Classe III, comparado-os com indivíduos controle com má oclusão de Classes I ou III. MÉTODOS: oitenta e nove indivíduos, de ambos os sexos, com idade variando entre 5 e 27 anos, Classe I (n = 32), Classe III não fissurados (n = 29) e Classe III com fissura labiopalatina unilateral (n = 28), oriundos do Centro de Odontologia e Pesquisa da PUC-MG e do Centro de Atendimento de Fissurados do Hospital da Baleia e da PUC-MG (CENTRARE), foram selecionados. Medições lineares e angulares da base do crânio, maxila e mandíbula foram realizadas e avaliadas por um único examinador calibrado, por meio de radiografias cefalométricas. Foram utilizados os testes ANCOVA e correção de Bonferroni para a análise estatística dos dados. RESULTADOS: com relação à base do crânio, os resultados não indicaram diferença estatística entre indivíduos controle (Classe I) e os indivíduos com fissuras (p > 0,017). O grupo com fissura foi diferente do grupo Classe III somente em relação à medida CI.Sp.Ba (p = 0,015). O comprimento maxilar (Co-A) apresentou diferença estatisticamente significativa na comparação entre o grupo controle (Classe I) e o grupo com fissuras (p < 0,001), sendo que os fissurados apresentaram uma maxila menor. Não foram encontradas diferenças na mandíbula (Co-Gn) entre indivíduos do grupo controle (Classe I) e indivíduos fissurados (p = 1,000). CONCLUSÃO: os resultados sugerem que não houve diferença estatisticamente significativa na base do crânio entre indivíduos Classe I e III e indivíduos com fissuras de lábio e palato com má oclusão de Classe III. .


Subject(s)
Animals , Female , Cardiomegaly/metabolism , Cardiomegaly/pathology , Fetal Heart/metabolism , Fetal Heart/pathology , Maternal Nutritional Physiological Phenomena , Overnutrition/metabolism , Overnutrition/pathology , Biomarkers/metabolism , Calcineurin/metabolism , Cardiovascular Diseases/epidemiology , Extracellular Space , Fascia/pathology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Myofibrils/pathology , NFATC Transcription Factors/metabolism , Natriuretic Peptides/genetics , Natriuretic Peptides/metabolism , Phosphorylation , RNA, Messenger/metabolism , Sheep, Domestic , TOR Serine-Threonine Kinases/metabolism
5.
Experimental & Molecular Medicine ; : e199-2015.
Article in English | WPRIM | ID: wpr-228162

ABSTRACT

Adseverin is a Ca2+-dependent actin filament-severing protein that has been reported to regulate exocytosis via rearrangements of the actin cytoskeleton in secretory cells. However, the role of adseverin in bone cells has not yet been well characterized. Here, we investigated the role of adseverin in osteoclastogenesis using primary osteoclast precursor cells. Adseverin expression was upregulated during RANKL (receptor activator of nuclear factor-kappaB ligand)-induced osteoclast differentiation. Moreover, genetic silencing of adseverin decreased the number of osteoclasts generated by RANKL. Adseverin knockdown also suppressed the RANKL-mediated induction of nuclear factor of activated T-cell c1 (NFATc1), which is a key transcription factor in osteoclastogenesis. In addition, adseverin knockdown impaired bone resorption and the secretion of bone-degrading enzymes from osteoclasts. These effects were accompanied by decreased NFATc1 expression and the activation of nuclear factor-kappaB. Collectively, our results indicate that adseverin has a crucial role in osteoclastogenesis by regulating NFATc1.


Subject(s)
Animals , Female , Humans , Active Transport, Cell Nucleus , Bone Resorption/genetics , Cell Differentiation , Cells, Cultured , Gelsolin/genetics , Gene Knockdown Techniques , Mice, Inbred ICR , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , RANK Ligand/metabolism
6.
Experimental & Molecular Medicine ; : 432-439, 2012.
Article in English | WPRIM | ID: wpr-119838

ABSTRACT

Platinum nanoparticles (PtNP) exhibit remarkable antioxidant activity. There is growing evidence concerning a positive relationship between oxidative stress and bone loss, suggesting that PtNP could protect against bone loss by modulating oxidative stress. Intragastric administration of PtNP reduced ovariectomy (OVX)-induced bone loss with a decreased level of activity and number of osteoclast (OC) in vivo. PtNP inhibited OC formation by impairing the receptor activator of nuclear factor-kappaB ligand (RANKL) signaling. This impairment was due to a decreased activation of nuclear factor-kappaB and a reduced level of nuclear factor in activated T-cells, cytoplasmic 1 (NFAT2). PtNP lowered RANKL-induced long lasting reactive oxygen species as well as intracellular concentrations of Ca2+ oscillation. Our data clearly highlight the potential of PtNP for the amelioration of bone loss after estrogen deficiency by attenuated OC formation.


Subject(s)
Animals , Mice , Metal Nanoparticles/administration & dosage , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Osteoclasts/drug effects , Osteoporosis/drug therapy , Ovariectomy/adverse effects , Oxidative Stress/drug effects , Platinum/administration & dosage , RANK Ligand/genetics , Reactive Oxygen Species/metabolism , Signal Transduction
7.
Biocell ; 34(2): 57-63, Aug. 2010. graf
Article in English | LILACS | ID: lil-595039

ABSTRACT

L-selectin is a member of the selectin family that play an important role both in mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells. Furthermore, L-selectin can function as a signal molecule. In our previous studies, we reported that L-selectin ligation could regulate CSF-1 (colony-stimulating factor-1) gene transcription, in which AP-1 acts as a crucial transcriptional factor. Here we investigated the function of the NFAT in the CSF-1 gene transcriptional events. We found that overexpression of WT NFAT induce CSF-1 gene transcription greatly in the activated Jurkat cells. Furthermore, we found that NFAT can be recruited to the nucleus after L-selectin ligation, and the nuclear NFAT interacts with the CSF-1 promoter region to regulate CSF-1 gene transcription in the L-s electin ligation activated Jurkat cells. These results indicate that nuclear NFAT can activate CSF-1 gene transcription by connecting with the CSF-1 promoter in the signaling events induced by L-selectin ligation.


Subject(s)
Humans , Animals , NFATC Transcription Factors/metabolism , Jurkat Cells , T-Lymphocytes/cytology , T-Lymphocytes , T-Lymphocytes/physiology , Macrophages/metabolism , L-Selectin/metabolism , Lymphocyte Activation , Transcription, Genetic
8.
The Korean Journal of Internal Medicine ; : 93-100, 2010.
Article in English | WPRIM | ID: wpr-10970

ABSTRACT

BACKGROUND/AIMS: The present study was performed to determine the effects of the ethyl acetate extract of Cudrania tricuspidata (EACT) on interleukin (IL)-1beta-stimulated receptor activator of NF-kappaB ligand (RANKL)-mediated osteoclast differentiation. METHODS: Bone marrow cells were harvested from 6-week-old male imprinting control region mice, and the differentiation of osteoclasts from these cells was evaluated by tartrate-resistant acid phosphatase and resorption pit formation assay. Phosphorylated extracellular signal regulated kinase (p-ERK), phosphorylated p38, phosphorylated c-Jun amino-terminal kinase, NF-kappaB (p65), IkappaBalpha, c-Fos, and nuclear factor of activated T-cells c1 (NFATc1) expression was examined by immunoblotting and quantitative reverse transcription-polymerase chain reaction. RESULTS: EACT inhibits IL-1beta-stimulated RANKL-mediated osteoclast differentiation. EACT also inhibits IL-1beta-stimulated RANKL-mediated phosphorylation of ERK 1/2, p38 mitogen activated protein kinase, and expression of c-Fos and NFATc1. CONCLUSIONS: These results suggest that EACT may be involved in the inhibition of bone loss by preventing osteoclast formation and may be used to manage bone destruction in inflammatory diseases, such as rheumatoid arthritis.


Subject(s)
Animals , Male , Mice , Acetates , Bone Marrow Cells/cytology , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Down-Regulation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1beta/pharmacology , MAP Kinase Signaling System/drug effects , Mice, Inbred ICR , Moraceae , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/metabolism , Stem Cells/cytology , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Experimental & Molecular Medicine ; : 596-606, 2008.
Article in English | WPRIM | ID: wpr-59828

ABSTRACT

Heat shock protein 70 (HSP70), which evidences important functions as a molecular chaperone and anti-apoptotic molecule, is substantially induced in cells exposed to a variety of stresses, including hypertonic stress, heavy metals, heat shock, and oxidative stress, and prevents cellular damage under these conditions. However, the molecular mechanism underlying the induction of HSP70 in response to hypertonicity has been characterized to a far lesser extent. In this study, we have investigated the cellular signaling pathway of HSP70 induction under hypertonic conditions. Initially, we applied a variety of kinase inhibitors to NIH3T3 cells that had been exposed to hypertonicity. The induction of HSP70 was suppressed specifically by treatment with protein kinase C (PKC) inhibitors (Go6976 and GF109203X). As hypertonicity dramatically increased the phosphorylation of PKC micron, we then evaluated the role of PKC micron in hypertonicity-induced HSP70 expression and cell viability. The depletion of PKC micron with siRNA or the inhibition of PKC micron activity with inhibitors resulted in a reduction in HSP70 induction and cell viability. Tonicity-responsive enhancer binding protein (TonEBP), a transcription factor for hypertonicity-induced HSP70 expression, was translocated rapidly into the nucleus and was modified gradually in the nucleus under hypertonic conditions. When we administered treatment with PKC inhibitors, the mobility shift of TonEBP was affected in the nucleus. However, PKC micron evidenced no subcellular co-localization with TonEBP during hypertonic exposure. From our results, we have concluded that PKC micron performs a critical function in hypertonicity-induced HSP70 induction, and finally cellular protection, via the indirect regulation of TonEBP modification.


Subject(s)
Animals , Humans , Mice , Carbazoles/pharmacology , Cell Line , Flavonoids/pharmacology , HSP70 Heat-Shock Proteins/biosynthesis , Indoles/pharmacology , Isoquinolines/pharmacology , MAP Kinase Signaling System/physiology , Maleimides/pharmacology , NFATC Transcription Factors/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Kinase C/antagonists & inhibitors , Protein Transport , Saline Solution, Hypertonic/pharmacology , Signal Transduction , Sulfonamides/pharmacology
10.
Braz. j. med. biol. res ; 38(3): 335-344, mar. 2005. ilus
Article in English | LILACS | ID: lil-394804

ABSTRACT

The nuclear factor of activated T cells (NFAT) family of transcription factors has been primarily identified in immune cells; however, these proteins have been recently found to be functionally active in several other non-immune cell types. NFAT proteins are activated upon different stimuli that lead to increased intracellular calcium levels. Regardless of their widely known cytokine gene expression properties, NFATs have been shown to regulate other genes related to cell cycle progression, cell differentiation and apoptosis, revealing a broader role for these proteins in normal cell physiology. Several reports have addressed the participation of NFATs in many aspects of malignant cell transformation and tumorigenic processes. In this review, we will discuss the involvement of the different NFAT family members in the regulation of cell cycling, differentiation and tumor formation, and also its implications on oncogenesis. Better understanding the mechanisms by which NFATs regulate cell cycle and tumor-related events should be relevant for the development of rational anti-cancer therapies.


Subject(s)
Humans , Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Neoplastic , Lymphocyte Activation , NFATC Transcription Factors/physiology , /metabolism , Cell Transformation, Neoplastic/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL